ALGEBRA IV FINAL EXAMINATION

Attempt all questions. Total Marks: 50. If you use a result proved in class then it is enough to just quote it. This is a three hour exam. You will also get some time before and after the examination for downloading and uploading respectively.

- (1) Let $f(x) = x^4 2 \in \mathbb{Q}[x]$. Identify a splitting field K/\mathbb{Q} , and the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ of f over \mathbb{Q} . Write all the intermediate subfields L with $\mathbb{Q} \subset L \subset K$, and the corresponding subgroups of the Galois group. (10 marks)
- (2) What is the Galois group of an irreducible degree 4 polynomial f(x) over \mathbb{Q} whose resolvent r(x) is $x^3 3x + 1$? What is the Galois group of $x^5 4x + 2$ over \mathbb{Q} ? Justify both answers. (5+5=10 marks)
- (3) Is the field extension $\mathbb{Q}(\cos(2\pi/7))/\mathbb{Q}$ a radical extension? Justify your answer. (10 marks)
- (4) Let $\Phi_n(x)$ be the *n*th cyclotomic polynomial. Is $\Phi_{18}(x)$ irreducible over (a) \mathbb{F}_{23} , (b) \mathbb{F}_{43} ? Justify your answers. (5+5 = 10 marks)
- (5) Let F be a field, let F^{al} be an algebraic closure of F. Let σ be an element of $\operatorname{Gal}(F^{al}/F) = \operatorname{Aut}_F(F^{al})$. Let K be the fixed field of σ . Prove that any finite extension L of K is Galois, and the Galois group $\operatorname{Gal}(L/K)$ is cyclic. (10 marks)