## ALGEBRA IV FINAL EXAMINATION

Attempt all questions. Total Marks: 50. If you use a result proved in class then it is enough to just quote it. This is a three hour exam. You will also get some time before and after the examination for downloading and uploading respectively.
(1) Let $f(x)=x^{4}-2 \in \mathbb{Q}[x]$. Identify a splitting field $K / \mathbb{Q}$, and the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ of $f$ over $\mathbb{Q}$. Write all the intermediate subfields $L$ with $\mathbb{Q} \subset L \subset K$, and the corresponding subgroups of the Galois group. (10 marks)
(2) What is the Galois group of an irreducible degree 4 polynomial $f(x)$ over $\mathbb{Q}$ whose resolvent $r(x)$ is $x^{3}-3 x+1$ ? What is the Galois group of $x^{5}-4 x+2$ over $\mathbb{Q}$ ? Justify both answers. ( $5+5=10$ marks)
(3) Is the field extension $\mathbb{Q}(\cos (2 \pi / 7)) / \mathbb{Q}$ a radical extension? Justify your answer. (10 marks)
(4) Let $\Phi_{n}(x)$ be the $n$th cyclotomic polynomial. Is $\Phi_{18}(x)$ irreducible over (a) $\mathbb{F}_{23}$, (b) $\mathbb{F}_{43}$ ? Justify your answers. $(5+5=10$ marks $)$
(5) Let $F$ be a field, let $F^{a l}$ be an algebraic closure of $F$. Let $\sigma$ be an element of $\operatorname{Gal}\left(F^{a l} / F\right)=\operatorname{Aut}_{F}\left(F^{a l}\right)$. Let $K$ be the fixed field of $\sigma$. Prove that any finite extension $L$ of $K$ is Galois, and the Galois $\operatorname{group} \operatorname{Gal}(L / K)$ is cyclic. (10 marks)

